Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

Civil

20/03/22

CONTINUOUS INTERNAL EVALUATION- 1

Dept: Civil	Sem / Div: 3 sem	Sub: Strength of Materials	S Code: 18CV32		
Date: 22-03-2022	Time: 11.00-12.30 PM	Max Marks: 50	Elective: N		

Note: Answer any 2 full questions, choosing one full question from each part.

QN Questions	Marks	RBT	COs
PARTA			
a Draw the stress-strain curve for mild steel specimen subjected to axial tension and indicate the salient points	5	L2	CO1
bA weight of 390 kN is supported by a short column of 250mm x 250mm square in section. The column is reinforced with 8 steel bars of cross sectional area 2500mm ² . Find the stresses in steel and concrete if Es=15Ec. If stress in concrete must not exceed 4.5MN/m ² , what area of steel is required in order that column may support a load of 480 kN.		L3	CO1
cA bar of 20mm diameter is tested in tension. It is observed that when a load of 37.7 kN is applied, the extension measured over a gauge length of 200mm is 0.12mm and contraction in diameter is 0.0036mm. Find the Poisson's ratio, Youngs modulus, Bulk modulus and Moduls of rigidity.		L3	CO1
OR			
a Write a note on temperature stresses with sketches	5	L2	CO1
bA circular bar of uniform cross sectional area of 1000 mm² is subjected to forces as shown in figure. If Youngs modulus for the material is 200 GPa, determine the total deformation 50km 150 mm 150 mm 150 mm		L3	CO1
c A steel bar of 20mm diameter is subjected to tension test in lab. Determine stress, strain, Young's Modulus, percentage elongation from the following data. Gauge length= 200 mm, extension at a load of 100kN is 0.147mm total elongation =50mm. Also determine the percentage decrease in cross sectional area of the specimen, if the diameter of the rod at failure is 16mm.		L3	COI
PART B			
a Define SF, BM, Point of Contra-flexure	5	L2	CO3
b Draw SFD and BMD for a cantilever beam subjected to loads as shown.	10	L3	CO3
2m Im I Im J			
c Draw SFD & BMD for the overhanging beam shown -20kn/m 40kn -20kn/m 4	10	L3	CO3
OP			

a Explain types of loads on beams	5	L2	CO3
b Sketch SFD and BMD for the beam shown at salient points	10	L3	CO3
c Sketch SFD & BMD for the beam sown at salient points. 2-30 M/M 80 km 6m		L3	CO3

Prepared by: Prof. Shivarama M S

HOD: Dr. Anand V RPage: 1